Algèbre et géométrie : recueil d'exercices corrigés [ Livre] / Jean, Fresnel / Michel, Matignon

Auteur principal: Fresnel, Jean, 1939-....Co-auteur: Matignon, MichelLangue: Français ; de l'oeuvre originale, Français.Publication : Paris : Hermann, impr. 2011Description : 1 vol. (XIII-447 p.) ; 24 cmISBN: 9782705680701.Classification: 510 MathématiquesRésumé: Ce recueil d'une centaine d'exercices corrigés sur l'algèbre et la géométrie, avec des résultats classiques et d'autres originaux, s'adresse en premier chef aux candidats à l'Agrégation qui trouveront dans les sujets abordés un choix important de développements pour l'épreuve orale. C'est aussi un outil précieux pour les candidats au CAPES et aussi pour les étudiants en Master de mathématiques. Ajoutons que tout esprit curieux découvrira dans cet ouvrage des beautés mathématiques qui aiguiseront sa sagacité. Les matières y sont découpées de façon traditionnelle en cinq chapitres. Sur l'algèbre linéaire, de nombreux sujets concernant les groupes linéaires sont abordés, que ce soient les matrices à coefficients dans Z, Q, ou bien R et C avec des propriétés topologiques. À propos d'espaces quadratiques, on trouvera des résultats de Cauchy sur les matrices symétriques réelles, mais aussi sur les groupes irréductibles et les sous-groupes compacts de GLn(R) et GLn(C). Le chapitre sur les groupes est riche en exercices sur le groupe symétrique, sur les p-groupes, et présente aussi un paragraphe conséquent sur les représentations linéaires de groupes finis et la transformée de Fourier discrète. Le chapitre sur les anneaux traite de la théorie des nombres avec les équations de Pell-Fermat, de Legendre, mais aussi des extensions cyclotomiques en relation avec les constructions à la règle et au compas et le théorème de Gauss sur les polygones réguliers. On trouvera beaucoup de choses sur les polynômes à plusieurs variables et aussi le théorème de Puiseux sur les séries formelles à une variable. Enfin la géométrie n'est pas oubliée, qu'elle soit affine élémentaire i.e. attachée aux espaces vectoriels, ou affine euclidienne i.e. attachée aux espaces vectoriels euclidiens. Beaucoup de sujets classiques sont abordés, comme le triangle de lumière, cercles inscrits et exinscrits à un triangle, l'ellipse de Steiner et d'autres oubliés comme le tétraèdre équifacial..Sujet - Nom commun: Algèbre -- Problèmes et exercices | Géométrie -- Problèmes et exercices
Current location Call number Status Notes Date due Barcode
ENS Rennes - Bibliothèque
Mathématiques
512 FRE (Browse shelf) Available 512 Algèbre 024263

Ce recueil d'une centaine d'exercices corrigés sur l'algèbre et la géométrie, avec des résultats classiques et d'autres originaux, s'adresse en premier chef aux candidats à l'Agrégation qui trouveront dans les sujets abordés un choix important de développements pour l'épreuve orale. C'est aussi un outil précieux pour les candidats au CAPES et aussi pour les étudiants en Master de mathématiques. Ajoutons que tout esprit curieux découvrira dans cet ouvrage des beautés mathématiques qui aiguiseront sa sagacité. Les matières y sont découpées de façon traditionnelle en cinq chapitres. Sur l'algèbre linéaire, de nombreux sujets concernant les groupes linéaires sont abordés, que ce soient les matrices à coefficients dans Z, Q, ou bien R et C avec des propriétés topologiques. À propos d'espaces quadratiques, on trouvera des résultats de Cauchy sur les matrices symétriques réelles, mais aussi sur les groupes irréductibles et les sous-groupes compacts de GLn(R) et GLn(C). Le chapitre sur les groupes est riche en exercices sur le groupe symétrique, sur les p-groupes, et présente aussi un paragraphe conséquent sur les représentations linéaires de groupes finis et la transformée de Fourier discrète. Le chapitre sur les anneaux traite de la théorie des nombres avec les équations de Pell-Fermat, de Legendre, mais aussi des extensions cyclotomiques en relation avec les constructions à la règle et au compas et le théorème de Gauss sur les polygones réguliers. On trouvera beaucoup de choses sur les polynômes à plusieurs variables et aussi le théorème de Puiseux sur les séries formelles à une variable. Enfin la géométrie n'est pas oubliée, qu'elle soit affine élémentaire i.e. attachée aux espaces vectoriels, ou affine euclidienne i.e. attachée aux espaces vectoriels euclidiens. Beaucoup de sujets classiques sont abordés, comme le triangle de lumière, cercles inscrits et exinscrits à un triangle, l'ellipse de Steiner et d'autres oubliés comme le tétraèdre équifacial.

Powered by Koha