Complexité algorithmique [ Livre] / Sylvain, Perifel

Auteur principal: Périfel, SylvainLangue: Français ; de l'oeuvre originale, Français.Publication : Paris : Ellipses, 2014Description : 1 vol. (XVII-410 p.) ; 24 cmISBN: 9782729886929.Collection: Références sciencesClassification: 004.12 Analyse des algorithmes et complexitéRésumé: Ce livre présente d'abord les notions de base en théorie de la complexité algorithmique avant de traiter de nombreux sujets avancés. Il s'agit du seul ouvrage en français couvrant un si large spectre dans ce domaine central en informatique théorique. Les notions mathématiques utiles sont rappelées et aucun prérequis, outre une culture mathématique de base, n'est supposé. Clair et précis, contenant de nombreux exercices, il s'adresse aux étudiants de mathématiques et d'informatique à partir du L3, aux candidats à l'option informatique de l'agrégation de mathématiques, aux enseignants désirant un ouvrage de référence permettant de donner des cours formels sur le sujet (que ce soit un cours introductif ou sur les sujets très techniques des derniers chapitres), et aux chercheurs souhaitant approfondir le domaine. La description rigoureuse du modèle de calcul (la machine de Turing) permet d'aborder solidement les bases de la complexité en temps et en espace (théorèmes de hiérarchie, accélération, etc.) et d'étudier le problème P = NP : NP-complétude, théorèmes de Ladner, de Mahaney... Le non-déterminisme est aussi exploré par les oracles et la hiérarchie polynomiale, ainsi que par les protocoles interactifs qui poursuivent l'étude menée sur les algorithmes probabilistes. Un chapitre est consacré aux classes de comptage avec le théorème de Toda et la complétude du permanent. Enfin, la problématique du calcul par circuits (non-uniformité) est détaillée, de nombreuses bornes inférieures sont montrées ainsi que les liens profonds avec la dérandomisation. .Sujet - Nom commun: Analyse numérique -- Manuels d'enseignement supérieur | Complexité de calcul (informatique) -- -- Manuels d'enseignement supérieur | Algorithmes -- Manuels d'enseignement supérieur
Current location Call number Status Notes Date due Barcode
ENS Rennes - Bibliothèque
Informatique
004.12 PER (Browse shelf) Available 004.12 Analyse des algorithmes et complexité 030183
ENS Rennes - Bibliothèque
Informatique
004.12 PER (Browse shelf) Available 004.12 Analyse des algorithmes et complexité 030185

Ce livre présente d'abord les notions de base en théorie de la complexité algorithmique avant de traiter de nombreux sujets avancés. Il s'agit du seul ouvrage en français couvrant un si large spectre dans ce domaine central en informatique théorique. Les notions mathématiques utiles sont rappelées et aucun prérequis, outre une culture mathématique de base, n'est supposé. Clair et précis, contenant de nombreux exercices, il s'adresse aux étudiants de mathématiques et d'informatique à partir du L3, aux candidats à l'option informatique de l'agrégation de mathématiques, aux enseignants désirant un ouvrage de référence permettant de donner des cours formels sur le sujet (que ce soit un cours introductif ou sur les sujets très techniques des derniers chapitres), et aux chercheurs souhaitant approfondir le domaine.
La description rigoureuse du modèle de calcul (la machine de Turing) permet d'aborder solidement les bases de la complexité en temps et en espace (théorèmes de hiérarchie, accélération, etc.) et d'étudier le problème P = NP : NP-complétude, théorèmes de Ladner, de Mahaney... Le non-déterminisme est aussi exploré par les oracles et la hiérarchie polynomiale, ainsi que par les protocoles interactifs qui poursuivent l'étude menée sur les algorithmes probabilistes.
Un chapitre est consacré aux classes de comptage avec le théorème de Toda et la complétude du permanent. Enfin, la problématique du calcul par circuits (non-uniformité) est détaillée, de nombreuses bornes inférieures sont montrées ainsi que les liens profonds avec la dérandomisation.

Powered by Koha