Calculus of variations / Jürgen Jost,... and Xianqing Li-Jost,... [ Livre]

Auteur principal: Jost, Jürgen, 1956-....Co-auteur: Li-Jost, XianqingLangue: Anglais.Publication : Cambridge (GB) : Cambridge University Press, 1998Description : XVI-323 p. ; 24 cmISBN: 0521642035.Collection: Cambridge studies in advanced mathematics, 64Classification: 517.9 Equations différentiellesRésumé: Chapter Contents Part I. One-Dimensional Variational Problems: 1. The classical theory; 2. Geodesic curves; 3. Saddle point constructions; 4. The theory of Hamilton and Jacobi; 5. Dynamic optimization; Part II. Multiple Integrals in the Calculus of Variations: 6. Lebesgue integration theory; 7. Banach spaces; 8. Lp and Sobolev spaces; 9. The direct methods; 10. Nonconvex functionals: relaxation; 11. G-convergence; 12. BV-functionals and G-convergence: the example of Modica and Mortola; Appendix A. The coarea formula; Appendix B. The distance function from smooth hypersurfaces; 13. Bifurcation theory; 14. The Palais-Smale condition and unstable critical points of variational problems..Sujet - Nom commun: Sobolev, Espaces de | Relaxation, Phénomènes de | Point critique | Intégrales multiples | Géodésiques (mathématiques) | Calcul des variations | Bifurcation, Théorie de la
Current location Call number Status Notes Date due Barcode
ENS Rennes - Bibliothèque
Magasin (archives)
517.9 JOS (Browse shelf) Available 517.9 Equations différentielles 00002226

Exercices à la fin de chaque chap. Index

Chapter Contents
Part I. One-Dimensional Variational
Problems: 1. The classical theory; 2.
Geodesic curves; 3. Saddle point
constructions; 4. The theory of Hamilton and
Jacobi; 5. Dynamic optimization; Part II.
Multiple Integrals in the Calculus of
Variations: 6. Lebesgue integration theory; 7.
Banach spaces; 8. Lp and Sobolev spaces; 9.
The direct methods; 10. Nonconvex
functionals: relaxation; 11. G-convergence;
12. BV-functionals and G-convergence: the
example of Modica and Mortola; Appendix
A. The coarea formula; Appendix B. The
distance function from smooth hypersurfaces;
13. Bifurcation theory; 14. The Palais-Smale
condition and unstable critical points of
variational problems.

Powered by Koha